	A	non
U	4	027

(P	age	s:	4)
1-	CO PO		* J

Name	

Reg. No.

FOURTH SEMESTER B.A. DEGREE EXAMINATION, APRIL 2016

(CUCBCSS-UG)

Core Course-Economics

ECO 4B 05-QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS - II

Time: Three Hours

Maximum: 80 Marks

Use of Calculator is permitted.

Part A

Answer all the questions.

1.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
 is:

(a) 0.

(b) 2.

(c) 5.

- (d) 4.
- 2. The derivative of $y = 3x^2 + 4x$ with respect to x is:
 - (a) $6x^3 + 4x^2$.

(b) 6x + 4.

(c) 3/2x + 4.

- (d) 3x + 4.
- 3. For the cost function $c(x) = 1 + 5x + 3x^2$, the marginal cost of producing 10 units is:
 - (a) 4,

(b) 321.

(c) 65.

- (d) 33:
- 4. Laspeyer's index measures changes in :
 - (a) Current consumption.
- (b) Fixed market basket.
- (c) Both fixed and market.
- (d) None.
- 5. In Paasche's index number the weight is:
 - (a) Current year quantity,
- (b) Base year quantity.
- (c) Current year price.
- (d) Base year price.
- 6. Bowley's index number is the
- of Laspeyer's and Paasche's index numbers.
- (a) Arithmetic mean.
- (b) Harmonic mean.
- (c) Geometric mean.
- (d) Progressive mean.

Turn over

(d)

(b)

(d)

(b)

(d)

Deflating.

None of these.

No. of children

NRR > GRR.

(b) $P(\bar{A} \cap B)$.

(d) $P(\bar{A} \cap \bar{B})$.

(b) $\frac{P(A \cap B)}{P(A)}$.

(d) $\frac{P(\bar{A} \cap B)}{P(A)}$.

12. In tossing a coin probability of getting head is twice the probability of getting tail, then probability

GRR/NRR = 0.

Total female population.

Making allowances for the effect of changing price levels is called:

9. The relation between general reproduction rate and net reproduction rate is:

Splicing.

Base shifting.

(a) Male population.

 $NRR \leq GRR$

NRR/GRR >1

(a) $P(A \cap B)$.

(c) $P(A \cap \overline{B})$.

(a) P (A).

(c) P (B).

8. Crude Birth Rate mainly depends on:

(c) Female population of age 15-49.

10. For any two events A and B, P(A) - P(B) is:

11. If A and B are two independent events then P (A/B) is:

of head is:		
(a) 0.2.	(b) $\frac{1}{3}$	
(c) $\frac{2}{3}$	(d) 0.3	
* *		$(12 \times \frac{1}{2} = 6 \text{ marks})$
Part	B (Very short answer questions	
	Answer any ten questions.	(- 5)60
13. Find the derivative of $y = 3x^2$	$^{2}(2x-5)$ with respect to x .	$3x^2 \cdot 2 + (2x - 5)6x$ $6x^2 + (2x - 5)6x$
14. Define marginal function.		6x+1220
15. For the cost function $c(x) = 3$	$3x^2 + 2x$, find the marginal cost for a	an output of 4 units.
	2+2	
M & F	26	

- 16. Define weighted index numbers.
- 17. What is meant by cost of living index number?
- 18. Define Fisher's index number
- 19. What is meant by vital records?
- 20. Define crude death rate.
- 21. Define age specific birth rate.
- 22. Define random experiment.
- 23. Define mutually exclusive events.
- 24. Find the probability of getting at least one head when two coins are tossed.

CAH) THE

 $(10 \times 2 = 20 \text{ marks})$

Part C (Short essay questions)

Answer any six questions.

25. Differentiate $\frac{(5x-2)^2}{x-3}$ with respect to x.

(χ -3) der (χ -2)-

- 26. Explain the concepts of total cost function, marginal cost function and average cost.
- 27. The revenue function is $R = 14x x^2$ and the cost function is $T = x (x^2 2)$. Find the marginal functions, equilibrium position and profit function.
- 28. What is an index number. Define Laspeyer's and Paschee's Index numbers? What the tests to be satisfied by an ideal index number?
- 29. What are the different mortality rates used in vital statistics? Explain.
- 30. What is meant by General fertility rate and specific fertility rate?

Part D (Essay questions)

Answer any two questions.

33. Find the maxima and minima of the total cost function:

$$TC = 31 + 24Q - 5.5Q^2 + \frac{1}{3}Q^3$$

Also give marginal costs at these points of maxima and minima.

34. Calculate Laspeyer's, Paasche's and Fisher's index number from the following data:

	2010		2014		
Commodities	Price	Quantity	Price	Quantity	
A	2	8	4	6	
В	5	10	6	5	
Ç	4	14	5	10	
D	2	19	2	13	

35. Calculate: (i) GFR; (ii) SFR; (iii) TFR and (iv) general reproduction rate from the following data:

Age group of child

bearing females	: 15–19	9 20-24	25-29	30-34	35-39	40-44	45-49
Number of						ř	
women ('000)	: 16	16.4	15.8	15.2	14.8	15	14.5
Total births	: 26,0	2244	1894	1320	916	280	145

36. An article manufactured by a company consists of two parts A and B. In the process of manufacture of part A. 9 out of 100 are likely to be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part B. Calculate the probability that the assembled part will be defective.

 $(2 \times 12 = 24 \text{ marks})$

5/4