\mathbf{C}	G	N	2	1	1
$\mathbf{\mathcal{C}}$	v	v	~		*

(Pages : 4)	4)	:	ges	Pa	(
----------------------	----	---	-----	----	---

Reg. No.....

SIXTH SEMESTER B.A. DEGREE EXAMINATION, MARCH 2019

(CUCBCSS)

Economics

ECO 6B 12-MATHEMATICAL ECONOMICS

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries ½ mark.

1. A linear function is in the form:

(a)
$$y = a + bx$$
.

(b)
$$y = a + bx + cx^2.$$

(c)
$$y = ax^n$$
.

(d)
$$y = a^x$$
.

2. For the consumption function, C = 100 + 0.8y, MPC is:

(b)
$$0.8y$$
.

(c)
$$0.8$$
.

(d) None of the above.

3. If the total revenue function is given as, $R = 2x^2 - 10x$, MR is:

(a)
$$x^2 - 5$$
.

(b)
$$4x$$
.

(c)
$$4x - 10$$
.

(d)
$$2x^3 - 10x^2$$
.

4. If change in price, either rise or fall, is followed by a fall in total outlay, the Elasticity of demand is said to be:

(a) Less than unity.

(b) Greater than unity.

(c) 1.

(d) 0.

5. For the demand function, D = 100 - 2P, price elasticity is:

(a)
$$\frac{-2P}{100-2P}$$

$$(d) \quad \frac{100 - 2P}{2P}.$$

- 6. The sufficient condition for maximum is:
 - (a) f''(x) > 0.

(b) f'(x) > 0.

(c) f'(x) = 0.

- (d) f''(x) < 0.
- 7. Marginal utility for the utility function $U = 20x^4 + 7x^3 + 13x^2 + 12x + 9$ is:
 - (a) $80x^3 7x^2 13x$.

(b) $80x^3 + 21x^2 + 26x + 12$.

(c) $80x^3 + 12$.

- (d) $80r^3 + 21r^2 + 13r$
- 8. In order to maximize profit, a firm must choose the output level such that its:
 - (a) MR < MC.

(b) MR > MC.

(c) MR = MC.

- (d) $MR \neq MC$.
- 9. If the production function is a linear homogeneous production function then the elasticity of substitution between capital and labour is:
 - (a) 0.

(b) Greater than one.

(c) Less than one.

- (d) Equal to one.
- 10. Linear Programming as an economic tool was first developed and applied by :
 - (a) Prof. Danzig.

(b) Von Neumann.

(c) Morgenstern.

- (d) Prof. W.W. Leontif.
- 11. The quantity of the supply of a product at a given price depends upon the nature of its:
 - (a) AC curve.

(b) MC curve.

(c) MR curve.

- (d) AR curve.
- 12. Input-Output analysis assumes:
 - (a) Increasing returns to scale.
- (b) Diminishing returns to scale.
- (c) Constant returns to scale.
- (d) None of the above.

 $(12 \times \frac{1}{2} = 6 \text{ marks})$

Part B (Very Short Answer Questions)

Answer any **ten** questions. Each question carries 2 marks.

- 13. Distinguish between Leontief open and closed input-output model.
- 14. What is a linear homogeneous function?
- 15. What is optimal solution?
- 16. Define cross elasticity of demand.
- 17. Define production possibility curve.
- 18. For the total utility function $U = 20x^4 + 7x^3 + 13x^2 + 12x + 9$, compute marginal utility.
- 19. What is an economic model?
- 20. Define Marginal propensity to consume.
- 21. If the price of a commodity is Rs. 5 and MR is Rs. 10, find the elasticity of demand.
- 22. Define market equilibrium.
- 23. What is an isoquant?
- 24. Compute Average cost for the Total cost $C = 8x^3 + 3x^2 6x + 3$.

8x2+3x-6x3/x

 $(10 \times 2 = 20 \text{ marks})$

Part C (Short Essay Questions)

Answer any six questions.

Each question carries 5 marks.

- 25. What is meant by input-output analysis? What are the various uses of input-output analysis?
- 26. Explain the concepts of maxima and minima of functions. How are they estimated?
- 27. Discuss the conditions for profit maximization under monopoly.
- 28. For a firm under perfect competition, it is given that p = 3 and $c = 100 + .015x^2$. Find how many items are produced to maximize the profit. What is the profit?
- 29. Determine Marginal Utilities of x and y at x = 3 and y = 2 for the Total Utility Function $U = 5x^2 y + 2xy^3 + 3x + 9y.$

Turn over

- 30. What are the applications of Linear Programming methods?
- 31. Calculate marginal productivity of labour and capital from the following production functions

 (i) $X = L^2 + 2L + 10$; (ii) $X = K^2 + 3K^3$.
- 32. Write a note on indifference curve. What are the properties of indifference curve?

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Questions)

Answer any **two** questions. Each question carries 12 marks.

33. Solve the following LPP graphically:

$$\label{eq:maximize} \begin{aligned} \text{Maximize Z} &= 2x_1 + 3x_2\\ \text{subject to} & x_1 + x_2 \leq 1\\ & 3x_1 + x_2 \leq 4\\ & x_1 \geq 0, \, x_2 \geq 0. \end{aligned}$$

- 34. Given the utility function U = f(x, y), the prices are $p_1 = Rs$. 5 and $p_2 = Rs$. 5 and consumer's income for the period is Rs. 50. Find out the consumer's equilibrium level of consumption of commodity x and y. Also prove the conditions for maximization.
- 35. Given the following Revenue (R) and Cost (C) functions for a firm $R = 20q q^2$ and $C = q^2 + 8q + 2$, find the equilibrium level of output, price, total revenue, total cost and profit.
- 36. Given the Demand and the Average Cost Functions of a monopolistic firm as P = 32 3q, $AC = q + 8 + \frac{5}{q}$, what level of output maximizes total profit and what are the corresponding values of R, AR, MR, C, AC, MC and Profit?

 $(2 \times 12 = 24 \text{ marks})$