C 32516

(Pages:4)

.

Name.....

Reg. No.....

FIRST SEMESTER M.A. DEGREE EXAMINATION, DECEMBER 2017

(CUCSS)

Economics

EC 01 C04-QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS-I

(2015 Admissions)

Time : Three Hours

Maximum : 36 Weightage

Part A (Multiple Choice)

Answer all the twelve questions. Each question carries a weightage of 1/4.

1.	If $\begin{pmatrix} 5\\ k+1 \end{pmatrix}$	$\binom{k+2}{1} = \binom{k+3}{3} = \binom{k+3}{3}$, then <i>k</i> is :				
	(a)	- 1.	(b)	- 2.		
	(c)	0	(d)	2.		
2.	For a s	ymmetric matrix A :				
	(a)	$\mathbf{A}^{\mathbf{T}}\mathbf{A} = 1.$	(b)	$\mathbf{A}^{\mathrm{T}}=\mathbf{A}.$		
	(c)	$A^2 = A.$	(d)	$\overline{\mathbf{A}}^{\mathbf{T}} = \mathbf{A}.$		
3.	The cha	aracteristics roots of $A = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}$ are	:			
	(a)	1 and 2.	(b)	1 and 4.		
	(c)	0 and 2.	(d)	0 and 8.		
4.	The transpose of the co-factor matrix is called :					
	(a)	Minor.	(b)	Inverse.		
	(c)	Adjoint.	(d)	Symmetric matrix.		
5.	$\lim_{x\to 0}\frac{\sin}{2\pi}$	$\frac{n(3x)}{x}$ is :				
	(a)	0.	(b)	3.		
	(c)	1.	(d)	2.		
6.	The derivative of $y = 5x^4$ with respect to x is :					
	(a)	$20x^3$.	(b)	$12x^4$.		
	(c)	$20x^5$.	(d)	$4x^{3}$.		

Turn over

2

- 7. Marginal function is :
 - (a) Ratio of total function and price.
- Product of total function and x. (b)
 - (c) Derivative of the total function.
- Product of average function and x. (d)

8. $\int_0^{\frac{1}{2}} (1 + \cos x) dx$ is :

(c) 1.

(a) $\frac{\pi}{2}$. (b) $1 + \frac{\pi}{2}$. (d) $1 - \frac{\pi}{2}$.

9. If A and B are independent events and P(A) = 0.5, P(B) = 0.3, then $P(A \cup B)$ is :

- (a) 0.8. (b) 0.15. (c) 0.7. (d) 0.65.
- 10. If A and B are any two events and P(A) = 0.5, P(B) = 0.6, $P(A \cup B) = 0.8$ then $P(A \cap B)$ is :
 - (a) 0.2. (b) 0.3. (c) 0.4. (d) 0.6.
- 11. For any *two* events A and B, P(A) P(B) is :
 - $(b)=P\left(\overline{A}\cap B\right).$ (a) $P(A \cap B)$. (c) $P(A \cap \overline{B})$. (d) $P(\overline{A} \cap \overline{B})$.
- 12. For a continuous random variable, P $(a < x \le b)$ is :
 - (a) F(b) F(a). (b) F(a) - F(b).
 - (c) F(b+h) F(a-h). (d) F(b+h) - F(a+h).

Part B (very Short Answer)

Answer any five questions. Each question carries 1 weightage.

13. Given that $A = \begin{pmatrix} 5 & 3 & 2 \\ 4 & 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 & 4 \\ 1 & -1 & 2 \end{pmatrix}$. Find C such that A + B - 2C = 0, where 0 is a null matrix of order 2×3 .

14. If
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -4 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & -7 \\ 5 & 8 \\ 2 & 1 \end{pmatrix}$. Show that $(AB)^{T} = B^{T} \cdot A^{T}$.

16. If
$$y = 2x^2 + \cos x$$
, then find $\frac{d^2y}{dx^2}$.

17. Evaluate $\int_0^x 4e^{-4x} dx$.

- 18. State the addition theorem for two events A and B.
- 19. In the process of manufacture of part, A, 10 out of 100 are likely to be defective. Similarly, 6 out of 100 are likely to be defective in the manufacture of part B. Calculate the probability that the assembled part will be defective.
- 20. State Baye's theorem.

Part C (Short Answer)

Answer any eight questions. Each question carries 2 weightage.

21. Given $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 5 & 4 \end{pmatrix}$. Show that A is non-singular.

22. Obtain the equilibrium prices of the following market model :

 $\begin{array}{ll} qd_1 = 12 + p_1 - 2p_2 & qs_1 = -2 + 3p_2 \\ qd_2 = 18 - 3p_1 + p_2 & qs_2 = -2 + 4p_1 \end{array}$

23. Find characteristics roots of $\begin{pmatrix} 9 & 0 & 0 \\ 2 & 5 & 0 \\ 5 & 7 & 1 \end{pmatrix}$.

- 24. Find the maxima and minima of the function $f(x) = (x-2)^2 (x+3)$.
- 25. Find the slope of the function $2x^3 + 6x^2 + 6$ at x = -2 and at x = 3.

26. Find the partial derivatives $\frac{\partial^2 y}{\partial x^2}$ and $\frac{\partial^2 x}{\partial x \partial y}$ of the function $2x^4 - 4y^3 + 2y^2 - 8xy + 9$.

- 27. Explain the Lagrangian method of multipliers in optimization ?
- 28. If two dice are thrown, what is the probability that the sum is (a) greater than 8, and (b) neither 7 nor 11.

Turn over

- 29. A bag contains 6 white balls. 4 red balls and 8 blue balls. Two ball aredrawn at random. Find the probability that they are (i)white and blue, (ii) both are red, and (iii) both are blue.
- 30. If A, B and C are independent events show that $A \cup B$ and C are also independent.
- 31. The probability that there is at least one error in an accounts statement prepared by A is 0.4 and for B and Cthey are 0.3 and 0.6 respectively. A, B and C prepared 10, 16 and 20 statements respectively. Find the expected number of correct statements in all.

Part D (Essay)

Answer any three questions. Each question carries 4 weightage.

32. Solve the following system of equations with the help of matrices

x + 2y + 3z = 14; 3x + 2z = 11 - y; 2x + 3y = 11 - z.

33. If p_t be the price, x_t the per capita quantity, y_t the per capita disposable income at time t and the demand function is :

 $\log p_t = 0.768 + 4 \log x_t - 21 \log y_t,$

Compute the price elasticity and income elasticity of demand.

- 34. In a bolt manufacturing factory machines A, B and C manufactures respectively 25%, 35% and 40% of the total. Of their output 5, 4, 2 percents arc defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B and C?
- 35. (a) Two ideal dice are thrown. Let X₁ be the score on the first die and X₂ denote the score on the second die. Let Y denote the maximum of X₁ and X₂:
 - (i) Write down the joint distribution of Y and X_1 .
 - (ii) Find the mean and variance of Y.
 - (b) Let X be a random variable with the following probability distribution :

x	:	- 3	6	9
		1	1	1
P(X - r)				
1(v - r)	•	6	2	3

Find E (X), E (X^2) and V (X).

36. A random variable X assumes the values -5, -3, -1, 0, 1, 3, 5 such that P(X = -5) = P(X = -3) = P(X = -3) = P(X = -3)

P(X = -1), P(X = 1) = P(X = 3) = P(X = 5) and 2P(X = 0) = P(X > 0) = P(X < 0). Obtain

the probability mass function of X and distribution function of X.