\qquad
Reg. No.

FIRST SEMESTER M.A. DEGREE EXAMINATION, DECEMBER 2017

(CUCSS)

Economics
EC 01 C04-QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS—I
(2015 Admissions)
Time : Three Hours
Maximum : 36 Weightage

Part A (Multiple Choice)

Answer all the twelve questions.
Each question carries a weightage of $1 / 4$.

1. If $\left(\begin{array}{cc}5 & k+2 \\ k+1 & -2\end{array}\right)=\left(\begin{array}{cc}k+3 & 4 \\ 3 & -k\end{array}\right)$, then k is:
(a) -1 .
(b) -2 .
(c) 0
(d) 2 .
2. For a symmetric matrix A :
(a) $\mathrm{A}^{\mathrm{T}} \mathrm{A}=1$.
(b) $\quad \mathrm{A}^{\mathrm{T}}=\mathrm{A}$.
(c) $\mathrm{A}^{2}=\mathrm{A}$.
(d) $\quad \overline{\mathrm{A}}^{\mathrm{T}}=\mathrm{A}$.
3. The characteristics roots of $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right)$ are :
(a) 1 and 2 .
(b) 1 and 4 .
(c) 0 and 2 .
(d) 0 and 8 .
4. The transpose of the co-factor matrix is called :
(a) Minor.
(b) Inverse.
(c) Adjoint.
(d) Symmetric matrix.
5. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}$ is :
(a) 0 .
(b) 3 .
(c) 1 .
(d) 2 .
6. The derivative of $y=5 x^{4}$ with respect to x is :
(a) $20 x^{3}$.
(b) $12 x^{4}$.
(c) $20 x^{5}$.
(d) $4 x^{3}$.
7. Marginal function is :
(a) Ratio of total function and price.
(b) Product of total function and x.
(c) Derivative of the total function.
(d) Product of average function and x.
8. $\int_{0}^{\frac{1}{2}}(1+\cos x) d x$ is :
(a) $\frac{\pi}{2}$.
(b) $1+\frac{\pi}{2}$.
(c) 1 .
(d) $1-\frac{\pi}{2}$.
9. If A and B are independent events and $\mathrm{P}(\mathrm{A})=0.5, \mathrm{P}(\mathrm{B})=0.3$, then $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$ is :
(a) 0.8 .
(b) 0.15 .
(c) 0.7 .
(d) 0.65 .
10. If A and B are any two events and $P(A)=0.5, P(B)=0.6, P(A \cup B)=0.8$ then $P(A \cap B)$ is :
(a) 0.2 .
(b) 0.3 .
(c) 0.4 .
(d) 0.6 .
11. For any two events A and $B, P(A)-P(B)$ is:
(a) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$.
(b) $P(\bar{A} \cap B)$.
(c) $\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})$.
(d) $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})$
12. For a continuous random variable, $\mathrm{P}(a<x \leq b)$ is :
(a) $\mathrm{F}(b)-\mathrm{F}(a)$.
(b) $\mathrm{F}(a)-\mathrm{F}(b)$.
(c) $\mathrm{F}(b+h)-\mathrm{F}(a-h)$.
(d) $\mathrm{F}(b+h)-\mathrm{F}(a+h)$.

Part B (very Short Answer)
 Answer any five questions.
 Each question carries 1 weightage.

13. Given that $\mathrm{A}=\left(\begin{array}{lll}5 & 3 & 2 \\ 4 & 2 & 1\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{rrr}2 & 3 & 4 \\ 1 & -1 & 2\end{array}\right)$. Find C such that $\mathrm{A}+\mathrm{B}-2 \mathrm{C}=0$, where 0 is a null matrix of order 2×3.
14. If $A=\left(\begin{array}{rrr}1 & 2 & 0 \\ 3 & -4 & 2\end{array}\right), B=\left(\begin{array}{rr}2 & -7 \\ 5 & 8 \\ 2 & 1\end{array}\right)$. Show that $(A B)^{T}=B^{T} \cdot A^{T}$.
15. For the cost function $c(x)=3 x^{2}+2 x$, find the marginal cost for an output of 4 units.
16. If $y=2 x^{2}+\cos x$, then find $\frac{d^{2} y}{d x^{2}}$.
17. Evaluate $\int_{0}^{x} 4 e^{-4 x} d x$.
18. State the addition theorem for two events A and B.
19. In the process of manufacture of part, A, 10 out of 100 are likely to he defective. Similarly, 6 out of 100 are likely to be defective in the manufacture of part B. Calculate the probability that the assembled part will be defective.
20. State Baye's theorem.

Part C (Short Answer)

Answer any eight questions.
Each question carries 2 weightage.
21. Given $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 5 & 4\end{array}\right)$. Show that A is non-singular.
22. Obtain the equilibrium prices of the following market model :
$q d_{1}=12+p_{1}-2 p_{2} \quad q s_{1}=-2+3 p_{2}$
$q d_{2}=18-3 p_{1}+p_{2} \quad q s_{2}=-2+4 p_{1}$
23. Find characteristics roots of $\left(\begin{array}{lll}9 & 0 & 0 \\ 2 & 5 & 0 \\ 5 & 7 & 1\end{array}\right)$.
24. Find the maxima and minima of the function $f(x)=(x-2)^{2}(x+3)$.
25. Find the slope of the function $2 x^{3}+6 x^{2}+6$ at $x=-2$ and at $x=3$.
26. Find the partial derivatives $\frac{\partial^{2} y}{\partial x^{2}}$ and $\frac{\partial^{2} x}{\partial x \partial y}$ of the function $2 x^{4}-4 y^{3}+2 y^{2}-8 x y+9$.
27. Explain the Lagrangian method of multipliers in optimization?
28. If two dice are thrown, what is the probability that the sum is (a) greater than 8, and (b) neither 7 nor 11.
29. A bag contains 6 white balls. 4 red balls and 8 blue balls. Two ball aredrawn at random. Find the probability that they are (i)white and blue, (ii) both are red, and (iii) both are blue.
30. If A, B and C are independent events show that $A \cup B$ and C are also independent.
31. The probability that there is at least one error in an accounts statement prepared by A is 0.4 and for B Cthey are 0.3 and 06 respectively. A, B and C prepared 10,16 and 20 statements respectively. Find the expected number of correct statements in all.

Part D (Essay)

Answer any three questions.
Each question carries 4 weightage.
32. Solve the following system of equations with the help of matrices
$x+2 y+3 z=14 ; \quad 3 x+2 z=11-y ; \quad 2 x+3 y=11-z$.
33. If p_{t} be the price, x_{t} the per capita quantity, y_{t} the per capita disposable income at time t and the demand function is :

$$
\log p_{t}=0.768+4 \log x_{t}-21 \log y_{t}
$$

Compute the price elasticity and income elasticity of demand.
34. In a bolt manufacturing factory machines A, B and C manufactures respectively $25 \%, 35 \%$ and 40% of the total. Of their output $5,4,2$ percents arc defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A, B and C ?
35. (a) Two ideal dice are thrown. Let X_{1} be the score on the first die and X_{2} denote the score on the second die. Let Y denote the maximum of X_{1} and X_{2} :
(i) Write down the joint distribution of Y and X_{1}.
(ii) Find the mean and variance of Y .
(b) Let X be a random variable with the following probability distribution:

$$
\begin{array}{lcccc}
x & : & -3 & 6 & 9 \\
\mathrm{P}(\mathrm{X}=x) & : & \frac{1}{6} & \frac{1}{2} & \frac{1}{3}
\end{array}
$$

Find $E(X), E\left(X^{2}\right)$ and $V(X)$.
36. A random variable X assumes the values $-5,-3,-1,0,1,3,5$ such that $P(X=-5)=P(X=-3)=$ $P(X=-1), P(X=1)=P(X=3)=P(X=5)$ and $2 P(X=0)=P(X>0)=P(X<0)$. Obtain the probability mass function of X and distribution function of X .

