| D | 7 | 1 | 2 | C | 1 |
|---|---|---|---|---|---|
| J | - | v | U | U | v |

(Pages: 3)

Name.....

Reg. No....

## FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CUCBCSS-UG)

Statistics

### STS 5B 05-MATHEMATICAL METHODS IN STATISTICS

Time: Three Hours

Maximum: 80 Marks

#### Section A

Answer all questions in one word. Each question carries 1 mark.

Fill in the blanks:

1. If 
$$s_n = \frac{2n+1}{3n+s}$$
 then  $\lim (s_n) = ----$ .

- 2. Bernoulli's inequality is ———.
- 3. The sequence  $(n^2)$  bounded below by ———.
- 4. If A is a non-empty bounded subset of R and B is the set of all upper bounds for A. Then inf B = ———
- 5. A necessary and sufficient condition for a monotone sequence to be convergent is that ———

6. If 
$$\lim (a_n) = 1$$
, then  $\lim \frac{(a_1 + a_2 + \dots + a_n)}{n} = \dots$ 

7. If f(x) is continuous on [a, b] then there exists a point c in [a, b] such that  $\int_a^b f(x) dx = \dots$ 

#### True or False:

- 8. A bounded function f defined on [a, b] having a finite number of discontinuities is R-integrable over [a, b].
- 9. The sequence  $(n^2)$  is a Cauchy's sequence.
- 10. Continuity is a necessary condition for the existence of a finite derivative but not a sufficient condition.

 $(10 \times 1 = 10 \text{ marks})$ 

Turn over

#### Section B

#### Answer all questions. Each question carries 2 marks.

- 11. If  $x, y \in \mathbb{R}$  then Show that  $|x + y| \le |x| + |y|$ .
- 12. Show that the sequence  $(s_n)$  where  $s_n = (-1)^n/n$  converges.
- 13. Prove that if f is continuous at  $a \in [a, b]$  then |f| is also continuous at a.
- 14. Show that if  $(s_n)$  is a sequence of non-negative number such that  $\lim s_n = |$  then  $| \ge 0$ .
- 15. Prove that if x is any positive real number then their exists  $n \in \mathbb{N}$  such that x < n.
- 16. Examine the validity of Rolle's theorem for the function f(x) = |x| in the interval [-1, 1].
- 17. Show that a function which is uniformly continuous on an interval I is continuous on that interval.

 $(7 \times 2 = 14 \text{ marks})$ 

#### Section C

Answer any three questions. Each question carries 4 marks.

- 18. State and prove Density theorem.
- 19. Show that the function f(x) = 1/x is not uniformly continuous on [0, 1].
- 20. Show that the sequence  $\left(\log \frac{1}{n}\right)$  is properly divergent sequence.
- 21. If f(x) = (x-1)(x-2)(x-3) and a = 0, b = 4, find c using Lagrange's mean value theorem.
- 22. If P is a partition of interval [a, b] and f is a bounded function defined on [a, b]. Show that M (b-M(b-a)  $\geq$  U(P, f)  $\geq$  L(P, f)  $\geq$  m(b-a). Where M = sup f, m = inf f.

 $(3 \times 4 = 12 \text{ marks})$ 

#### Section D

Answer any four questions. Each question carries 6 marks.

- 23. State and Prove Cauchy's mean value theorem.
- 24. Show that a function continuous on [a, b] is R-integrable on [a, b].

- 25. Show that a function which is continuous on a closed bounded interval is also uniformly continuous on that interval.
- 26. Show that continuity is a necessary condition for the existence of a finite derivative but not a sufficient condition.
- 27. Show that the set of rational numbers Q does not satisfy the Completeness property.
- 28. Show that the sequence  $(s_n)$  defined by :

$$s_n = \left\{ \sqrt{n+1} - \sqrt{n} \right\}, \forall n \in \mathbb{N} \text{ is convergent.}$$

 $(4 \times 6 = 24 \text{ marks})$ 

#### Section E

Answer any two questions.

Each question carries 10 marks.

- 29. Show that if  $f \in \mathbb{R}[a, b]$  then  $|f| \in \mathbb{R}[a, b]$  and  $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$ .
- 30. A sequence  $(s_n)$  converges iff it is a Cauchy's sequence.
- 31. (i) If a function f is continuous on a closed and bounded interval [a, b] then it attains its bound on [a, b].
  - (ii) Test the continuity of the function f(x) at x = 0 where

$$f(x) = x \sin\left(\frac{1}{x}\right), \ x \neq 0;$$
$$= 0 \qquad \text{at } x = 0.$$

32. State and Prove second fundamental theorem on integral calculus.

 $(2 \times 10 = 20 \text{ marks})$ 

57036

# V SEMESTER B.Sc. DEGREE EXAMINATION, Nov 2017 (CUCBCSS-UG)

#### Statistics

## STS 5B 05 -MATHEMATICAL METHODS IN STATISTICS

Time: 3 Hours

Maximum: 80 Marks

Section A - Answer all questions in one word. Each question carries 1 mark.

1. 2/3

2.  $(1+x)^n \ge 1+nx$ 

3. 1

4. Sup(A,B)

5. .it is bounded.

6. 1.

7. F(c)(b-a)

8. True

9. False

10.true

11.proof of triangular inequality

12.( $S_{2n}$ )and ( $S_{2n-1}$ ) are convergent hence( $S_n$ )convergent

13. Proof 2 marks

14. Proof 2 marks

15.Proof 2 marks

16.Proof 2marks

17. Proof 2marks

18. Proof 4 marks

19. Proof 4 marks

20.Proof 4 marks

 $21.C=2\pm 2/\sqrt{3}$ 

22. Proof 4 marks

23. Cauchys mean value theorem statement 2 marks proof 4 marks

24. Proof 6 marks

25.proof6 marks

26. Proof 6 marks

27. Proof 6 marks

28.Sn= $1/2\sqrt{n}$  |Sn-0|<e if all n>m converges to 0

29.Proof 10 marks

30. Proof 10 marks Cauchy sequence converges.

31 (a) proof (b) F(0)=0, f(0+)=0, f(0-)=0 continuous.

32 Statement 2 marks proof 8 marks.