D	7	0	9	0	1
D	6	U	O	O	T

(P	ages	0	3
1	ages		U

Nam	ıe	
		. 4
Reg.	No	

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2019

(CUCBCSS-UG)

Statistics

STS 5B 06—STATISTICAL COMPUTING

Time: Three Hours

Maximum: 80 Marks

Section A

Answer all the ten questions in one word. Each question carries 1 mark.

- 1. What is the output of the R-command, seq (10, 25, by = 3);
- 2. How you simulate 50 standard normal random variables and put in y.
- 3. If p-value is 0.3051 is an output, what will be your inference?
- 4. Write down the R-command to draw a boxplot.
- 5. If A and B are matrices of same order, what will give A*B?
- 6. Write down the R-command to find the combination 10C2.
- 7. Write down the R-command to find P (X = 5), for X follows binomial with parameters n = 10 and p = 0.25.
- 8. Write down R-command to find correlation co-efficient.
- 9. Write down R-command to carryout one way ANOVA.
- 10. Write down the R-command for difference of Proportion.

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer all the seven questions in one sentence. Each question carries 2 marks.

- 11. What are the advantages of R?
- 12. What do you mean by packages in R?
- 13. What is the use of Shapiro.test ()?
- 14. Give the set of R-commands to draw a simple random sample of size 15 from a population of 50 observations.

Turn over

25. Different methods of data input in R.

26. Write R commands.

27. Explain test of equality of variances in R.

28. Goodness of fit and R command.

(6 Marks)

(6 Marks)

(6 Marks)

(6 Marks)

(6 Marks)

- 15. Write down R-command to find the variance of data vector x.
- 16. Describe the output of the R-command, B<-barplot(c(15,22,35,12));B;
- 17. Explain importance of p-value given by R.

 $(7 \times 2 = 14 \text{ marks})$

Section C

Answer any three out of five questions in a paragraph.

Each question carries 4 marks.

- 18. Explain the graphical method to checking normality of data. What is the R-command for plotting the same?
- 19. Distinguish between the functions qnorm() and rnorm().
- 20. Explain the utility of data.frame() and scan() functions.
- 21. Describe the procedure for import a data file from MS-Excel to R.
- 22. If Y follows a Poisson distribution with mean 1.3, write a R-program to obtain a table of Poisson probabilities.

 $(3 \times 4 = 12 \text{ marks})$

Section D

Answer any four out of six questions. Each question carries 6 marks.

- 23. Explain the method of fitting linear regression mode. How do you test significance of the model? Write down the R command for this.
- 24. Briefly describe history of development of R.
- 25. Explain some methods of data input in R.
- 26. Write down R command to determine correlation coefficient, regression lines X on Y and Y on X for the following data:

X 34 36 35 34 29 35 Y 37 37 34 34 33 40 39 37 36 35

- 27. Describe the program to test the equality of variances in R.
- 28. Explain goodness of test. Write down the R command to test.

 $(4 \times 6 = 24 \text{ marks})$

Section I

Answer any two questions. Each question carries 10 marks.

- 29. Explain the following:
 - (a) Lists in R programming.
 - (b) Data frames in R programming.
 - (c) Work space in R programming.
 - (d) Scripts in R programming.
- 30. Write down the R command for:
 - (a) Simulate 100 sample observations from the normal distribution with mean 50 and standard deviation 4.
 - (b) Find mean and variance of generated sample
 - (c) Drawing the Q-Q plot of the generated sample.
 - (d) Test whether the mean of the population is 50.
 - (e) Constructing 99% confidence intervals for the population mean.
- 31. Suppose that the number of screws produced by a sophisticated machine per day has a poisson distribution with mean 2. What is the probability that out of total production of the day, there is?
 - (a) No defective screw.
 - (b) Exactly 2 defective screw.
 - (c) Atleast one defective screw.
 - (d) Atmost two defective screws.
- 32. Explain the procedure for constructing confidence intervals for the difference of means of two normal populations. Specify the underlying assumptions and methods to check them. Write down the R command to implement these.

 $(2 \times 10 = 20 \text{ marks})$

24. History of development of R.

(6 Marks)

25. Different methods of data input in R.

(6 Marks)

26. Write R commands.

(6 Marks)

27. Explain test of equality of variances in R.

(6 Marks)

28. Goodness of fit and R-command.

(6 Marks)

5 70361

ANSWER KEY

SECTION A

- 1. [1]10 13 16 19 22 25
- 2. x<-rnorm(50,0,1);
- 3. p-value=0.3051> α (0.05). so we accept the null hypothesis.
- boxplot(x,main="",xlab="",ylab="");
- 5. A%*%B;
- 6. choose(10,2);
- 7. dbinom(5,10,0.25);
- pearson correlation coefficient, cor(x,y);
 spearman rank correlation coefficient, cor(x,y,method="spearman");
- 9. oneway.test(values~ind,data=d,var.equal=T);
- 10. prop.test(x,n,alt=""); .

SECTION B

- 11. Advantages of R. (2 Marks)12. Packages in R (2Marks)
- 13. Uses of shapiro.test() (2Marks)
- 14. SRSWOR-sample(50,15);
 - SRSWR-sample(50,15,replace=T); (1 Mark each)
- 15. v<-var(x);variance<-(n-1)*v/n; (2 Marks)
- 16. Describe the output. (2 Marks)
- 17. Importance of p-value. (2 Marks)

SECTION C

- 18. Explain hist(),boxplot(),qqplot(). (4 Marks)
- 19. Explain qnorm() and rnorm(). (2 Marks each)
- 20. Uses of data.frame() and scan(). (2 Marks each)21. explain the procedure. (4 Marks)
- 22. x<-0:100;dpois(x,1.3); (4 Marks)

SECTION D

- 23. Explain method of fitting linear regression model. (6 Marks)
- 24. History of development of R. (6 Marks)25. Different methods of data input in R. (6 Marks)
- 26. Write R commands. (6 Marks)
- 27. Explain test of equality of variances in R. (6 Marks)
- 28. Goodness of fit and R command. (6 Marks)

SECTION E

- 29. 2.5 Marks each.
- 30. 2.5 Marks each.